Tag Archives: Variance

Exam C Practice Problem 25 – Estimation Based on Claim Experience

Problem 25-A

You are given the following information about an insured population:

  • For each risk in the population, the annual number of claims follows a Poisson distribution with mean \theta.
  • The parameter \theta follows a Gamma distribution with mean 2 and variance 0.8.

A risk is randomly selected from the insured population. After observing the selected risk for 10 years, the following is known.

  • Based on the number of claims observed in the first 9 years, the Bayesian estimate for the expected number of claims per year for this risk is 4.
  • Based on all the claims observed in the entire 10-year period, the Bayesian estimate for the expected number of claims per year for this risk is 3.92.

What is the number of claims observed in the last year of the observation period for the selected risk?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 25-B

You are given the following information about an insured population:

  • For each risk in the population, the annual number of claims follows a Poisson distribution with mean \theta.
  • The parameter \theta follows a Gamma distribution with mean 1.6 and variance 0.32.

A risk is randomly selected from the insured population. After observing the selected risk for 10 years, the following is known.

  • Based on the number of claims observed in the first 5 years, the Bayesian estimate for the expected number of claims per year for this risk is 1.7.
  • Based on all the claims observed in the entire 10-year period, the Bayesian estimate for the expected number of claims per year for this risk is 1.8.

What is the number of claims observed in the last 5 years of the observation period for the selected risk?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 10

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 12

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 16

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 19

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Advertisements

Exam C Practice Problem 24 – Bayesian Credibility Example

Both Problems 24-A and 24-B use the following information.

You are given the following information:

  • The claim size of an insured has an exponential distribution with mean \displaystyle \frac{1}{\theta}.
  • The parameter \theta has a Gamma distribution with mean 6 and variance 12.

A randomly selected insured has one claim of size 10.

___________________________________________________________________________________

Problem 24-A

What is the Bayesian estimate of the expected amount of the next claim for this insured?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.25

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.5

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2.2

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3.1

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3.5

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 24-B

What is the posterior probability that the size of the next claim for this insured will be greater than 5?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.12

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.15

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.19

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.21

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.25

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Exam C Practice Problem 22 – Estimating Aggregate Claims

Both Problems 22-A and 22-B use the following information.

You are given the following:

  • The annual number of claims for a policyholder follows a binomial distribution with mean 0.5 and variance 0.375.
  • The following is the probability function of the claim size X.
      • \displaystyle \begin{bmatrix} X=x&\text{ }&P(X=x) \\\text{ }&\text{ }&\text{ }  \\ 10&\text{ }&0.35  \\ 20&\text{ }&0.35 \\ 30&\text{ }&0.25  \\ 40&\text{ }&0.05     \end{bmatrix}

  • The number of claims and the claim sizes are independent.

___________________________________________________________________________________

Problem 22-A

Calculate the variance of the annual aggregate claim amount for the policyholder.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 30

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 71.5

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 180

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 190

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 230

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 22-B

In a certain year, the policyholder has incurred at least one claim and the aggregate claim amount is below 45. Given this information, what is the mean aggregate claim amount for the policyholder?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9.0

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 10.0

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 12.5

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 20.0

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 21.3

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Exam C Practice Problem 19 – Buhlmann Credibility Estimates

Problem 19-A

The number of claims in a year for an insurance policy in a large pool of insurance policies has a distribution with mean \theta and variance \lambda.

The following provides more information about the large pool of insurance policies.

  • For half of the insurance policies in the large pool \theta=1, while for the other half \theta=0.5.
  • For three-quarters of the insurance policies in the large pool \lambda=0.5, while for the other one-quarter \lambda=0.375.

An insurance policy is randomly selected from the large pool. Insurance company records indicate that there are 6 claims in last 5 years.

Determine the Buhlmann credibility estimate of the number of claims for the selected insurance policy in the next year.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.82

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.85

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.88

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.93

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.02

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 19-B

The number of claims in a year for an insurance policy in a large pool of insurance policies has a distribution with mean \theta and variance \lambda.

The following provides more information about the large pool of insurance policies.

  • For three-quarters of the insurance policies in the large pool \theta=1, while for the other one-quarter \theta=0.5.
  • For one-quarter of the insurance policies in the large pool \lambda=0.5, while for the other three-quarters \lambda=0.375.

An insurance policy is randomly selected from the large pool.

Determine the Buhlmann credibility factor assigned to 5 years of claim data from the selected insurance policy.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{15}{41}

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{49}{133}

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{19}{41}

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{62}{133}

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{130}{133}

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Exam C Practice Problem 18 – Estimating Claim Frequency

Problem 18-A

A portfolio of independent risks is divided into five distinct classes that are equal in size.

The annual claim count distribution for any risk in this portfolio is assumed to be a binomial distribution. The following table shows more information about these five classes.

      \displaystyle \begin{bmatrix} \text{Class}&\text{ }&\text{ }&\text{Mean} &\text{ }&\text{ }&\text{Variance} \\\text{ }&\text{ }&\text{ }&\text{Of Claim Count} &\text{ }&\text{ }&\text{Of Claim Count} \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 1&\text{ }&\text{ }&\displaystyle \frac{1}{2} &\text{ }&\text{ }&\displaystyle \frac{1}{4} \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 2&\text{ }&\text{ }&\displaystyle 1&\text{ }&\text{ }&\displaystyle \frac{1}{2} \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 3&\text{ }&\text{ }&\displaystyle \frac{3}{2}&\text{ }&\text{ }&\displaystyle \frac{3}{4} \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 4&\text{ }&\text{ }&\displaystyle 2&\text{ }&\text{ }&\displaystyle 1 \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 5&\text{ }&\text{ }&\displaystyle \frac{5}{2}&\text{ }&\text{ }&\displaystyle \frac{5}{4}    \end{bmatrix}

A risk is randomly selected from this portfolio and is observed to have one claim in the last year.

What is the probability that the mean number of claims in a year for this risk is greater than 1.5?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.209

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.228

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.600

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.761

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.781

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 18-B

A portfolio of independent risks is divided into five distinct classes that are equal in size.

The annual claim count distribution for any risk in this portfolio is assumed to be a geometric distribution. The following table shows more information about these five classes.

      \displaystyle \begin{bmatrix} \text{Class}&\text{ }&\text{ }&\text{Mean} &\text{ }&\text{ }&\text{Variance} \\\text{ }&\text{ }&\text{ }&\text{Of Claim Count} &\text{ }&\text{ }&\text{Of Claim Count} \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 1&\text{ }&\text{ }&\displaystyle 1 &\text{ }&\text{ }&\displaystyle 2 \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 2&\text{ }&\text{ }&\displaystyle 2&\text{ }&\text{ }&\displaystyle 6 \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 3&\text{ }&\text{ }&\displaystyle 3&\text{ }&\text{ }&\displaystyle 12 \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 4&\text{ }&\text{ }&\displaystyle 4&\text{ }&\text{ }&\displaystyle 20 \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 5&\text{ }&\text{ }&\displaystyle 5&\text{ }&\text{ }&\displaystyle 30    \end{bmatrix}

A risk is randomly selected from this portfolio and is observed to have one claim in the last year.

What is the probability that the mean number of claims in a year for this risk is greater than 2.5?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.49

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.51

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.55

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.57

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.60

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Exam C Practice Problem 17 – Estimating Claim Frequency

Both Problems 17-A and 17-B use the following information.

An insurance portfolio consists of independent risks.

For each risk in this portfolio, the number of claims in a year has a Poisson distribution with mean \theta. The parameter \theta follows a Gamma distribution.

A risk is randomly selected from this portfolio. Prior to obtaining any claim experience, the number of claims in a year for this risk has a distribution with mean 0.6 and variance 0.72.

After observing this risk for one year, insurance company records indicate that there are 2 claims for this risk.

___________________________________________________________________________________

Problem 17-A

After knowing the insurance company records, what is the expected number of claims per year for this risk?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.60

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.83

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.91

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.25

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2.00

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 17-B

After knowing the insurance company records, what is the variance of the number of claims per year for this risk?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{26}{36}

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{32}{36}

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{35}{36}

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{42}{36}

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{45}{36}

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Exam C Practice Problem 16 – Another Poisson-Gamma Problem

Both Problems 16-A and 16-B use the following information.

A portfolio consists of independent risks divided into two classes. Sixty percent of the risks are in Class 1 and forty percent are in Class 2.

The following has more information about Class 1:

  • The annual number of claims for a single risk in Class 1 follows a Poisson distribution with mean 1.
  • The claim size follows a Gamma distribution with mean 1.6 and variance 1.28.
  • The number of claims and the claim sizes are independent

The following has more information about Class 2:

  • The annual number of claims for a single risk in Class 2 follows a Poisson distribution with mean 2.6.
  • The claim size follows a Gamma distribution with mean 2.5 and variance 3.125.
  • The number of claims and the claim sizes are independent

A risk is randomly selected from this portfolio. According to the records of the insurer, there are 4 claims for this risk in the amounts 2, 3, 5 and 5 within the last 3 years.

___________________________________________________________________________________

Problem 16-A

Determine the Buhlmann credibility estimate for total claim costs for this risk in the next year.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3.7

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3.7

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4.4

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4.5

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5.0

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 16-B

Determine the Buhlmann credibility estimate for the number of claims for this risk in the next year.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.33

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.35

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.46

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.48

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.64

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}