## Exam C Practice Problem 2 – Variance of Pure Premium

Problem 2-A

You are given:

• For a given risk, the number of claims in a calendar year is 0 (with probability 0.4), 1 (with probability 0.5) and 2 (with probability 0.1).
• In case of only 1 claim, the claim size will be 100 (with probability 0.75) and 200 (with probability 0.25).
• In case of 2 claims, the claim size will be 100 (with probability 0.5) and 200 (with probability 0.5). The two claim sizes are independent.

Calculate the variance of the pure premium for this risk. $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 135$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8,650$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9,694$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 10,296$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 18,250$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

Problem 2-B

You are given:

• For a given risk, the number of claims in a calendar year is 0 (with probability 0.4), 1 (with probability 0.5) and 2 (with probability 0.1).
• The claim size will be 100 (with probability 0.75) and 200 (with probability 0.25).
• The number of claims and the claim size are independent.
• In case of 2 claims, the two claim sizes are independent.

Calculate the variance of the pure premium for this risk. $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 310$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7,189$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7,236$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7,719$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 96,100$

______________________________________________________________ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

______________________________________________________________

______________________________________________________________ $\copyright \ 2013 \ \ \text{Dan Ma}$