Tag Archives: Percentile

Exam C Practice Problem 21 – Working with Aggregate Claims

Problem 21-A

You are given the following:

  • The annual number of claims follows a Poisson distribution with mean 800.
  • The claim size follows a Gamma distribution with \alpha = 5 and \theta = 2.
  • The number of claims and the claim sizes are independent.

Using the normal approximation for the distribution of aggregate claim costs, calculate the probability that the aggregate claim costs will exceed 8350?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.11

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.13

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.15

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.17

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.20

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

Problem 21-B

You are given the following:

  • The annual number of claims follows a geometric distribution with mean 8.
  • The claim size follows an exponential distribution with mean 5.
  • The number of claims and the claim sizes are independent.

Using the normal approximation for the distribution of aggregate claim costs, calculate the 75th percentile of aggregate claim costs?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 64

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 66

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 68

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 75

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}

Advertisements

Exam C Practice Problem 1 – Working with Mixture Distributions

Problem 1-A

You are given:

    • The claim size X for a policyholder randomly chosen from a large group of insureds is a mixture of a Burr distribution with \alpha=1, \theta=\sqrt{8000} and \gamma=2 and a Pareto distribution with \alpha=1 and \theta=8000.
    • The mixture distribution of X has equal mixing weights.

Calculate the median of X.

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 400

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 405

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 450

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 475

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4045

\text{ }

\text{ }

\text{ }

\text{ }

Problem 1-B

You are given:

    • The claim size X in the current year for a policyholder randomly chosen from a large group of insureds is a mixture of a Burr distribution with \alpha=2, \theta=\sqrt{1000} and \gamma=2 and a Pareto distribution with \alpha=2 and \theta=1000.
    • The mixture distribution of X has mixing weights 90% (for the Burr distribution) and 10% (for the Pareto distribution).
    • Suppose that the claim size for the chosen policyholder in the next year will increase 20% due to inflation.

What is the probability that the claim size in the next year will exceed 50?

\text{ }

      \displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.16

      \displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.18

      \displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.21

      \displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.23

      \displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.29

___________________________________________________________________________________

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

\text{ }

___________________________________________________________________________________

___________________________________________________________________________________

\copyright \ 2013 \ \ \text{Dan Ma}