## Exam C Practice Problem 26 – A Limited Fluctuation Credibility Example

Problem 26-A

You are given the following about a large portfolio of insurance policies:

• For each insurance policy, the annual number of claims follows a binomial distribution with $m$ = 3 and $q$ = 0.3.
• The claim size follows an inverse Gamma distribution with $\alpha$ = 2.1 and $\theta$ = 3.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 10% of expected claim costs 90% of the time.

Using limited fluctuation credibility, determine the expected number of claims required for full credibility.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 460$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 790$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2895$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3715$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4600$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

Problem 26-B

You are given the following about a large portfolio of insurance policies:

• For each insurance policy, the annual number of claims follows a binomial distribution with $m$ = 6 and $q$ = 0.1.
• The claim size follows a Gamma distribution with $\alpha$ = 0.8 and $\theta$ = 1.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 10% of expected claim costs 90% of the time.

Using limited fluctuation credibility, determine the expected number of exposures required for full credibility.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 514$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 582$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 970$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5141$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5818$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$

## Exam C Practice Problem 20 – Working with Full Credibility Standard

Problem 20-A

You are given the following:

• The annual number of claims generated from a portfolio of insurance policies follows a Poisson distribution.
• The claim size is modeled by the random variable $Y=X^2$ where $X$ has an exponential distribution with mean 2.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 5% of expected claim costs 95% of the time.

Using limited fluctuation credibility, determine the expected number of claims required for full credibility?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3073$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4610$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6147$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7684$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9220$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

Problem 20-B

You are given the following:

• The annual number of claims generated from a portfolio of insurance policies follows a Poisson distribution.
• The claim size is modeled by the random variable $Y=4 X^2+32$ where $X$ has an exponential distribution with mean 2.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 5% of expected claim costs 95% of the time.

Using limited fluctuation credibility, determine the expected number of claims required for full credibility?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2017$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3073$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3457$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4150$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9220$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$

## Exam C Practice Problem 14 – Examples of Limited Fluctuation Credibility

Problem 14-A

You are given the following:

• The annual number of claims generated from a portfolio of insurance policies follows a Poisson distribution.
• The claim size follows a uniform distribution on $(0,t)$ where $t$ is unknown.
• The number of claims and the claim sizes are independent.

Using limited fluctuation credibility, how many expected claims are required to be 95% certain that actual claim costs will be within 5% of the expected claim costs?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1443$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1579$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1936$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1945$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2050$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

Problem 14-B

You are given the following:

• The annual number of claims generated from a portfolio of insurance policies follows a Poisson distribution.
• The claim size follows a distribution with the following moment generating function.
• $\displaystyle M(t)=\frac{1}{(1-10t)^4}$
• The number of claims and the claim sizes are independent.

What is the least number of expected claims that are required to be 90% certain that actual claim costs will be within 5% of the expected claim costs?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 820$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1230$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1353$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1376$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1396$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$