## Exam C Practice Problem 6 – Working with Posterior Distributions

Problem 6-A

You are given the following:

• The number of claims in a calendar year for a given risk follows a Poisson distribution with mean $\theta$.
• The prior distribution of $\theta$ has the Gamma distribution with mean 2 and variance 1.

After observing this risk for five calendar years, a total of 12 claims are observed.

Which of the following is the moment generating function of the posterior distribution of $\theta$?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ M(t)=\biggl(\frac{2}{2-t}\biggr)^{16} \ \ \ \ \ \ \ \ t<2$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ M(t)=\biggl(\frac{7}{7-t}\biggr)^{15} \ \ \ \ \ \ \ \ t<7$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ M(t)=\biggl(\frac{14}{14-t}\biggr)^{9} \ \ \ \ \ \ \ \ t<14$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ M(t)=\biggl(\frac{7}{7-t}\biggr)^{15} \ \ \ \ \ \ \ \ t<2$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ M(t)=\biggl(\frac{7}{7-t}\biggr)^{16} \ \ \ \ \ \ \ \ t<7$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

Problem 6-B

You are given the following:

• The number of claims in a calendar year for a given risk follows a Poisson distribution with mean $\theta$.
• The prior distribution of $\theta$ has the Gamma distribution with mean 4 and variance $\frac{1}{2}$.

After observing this risk for eight calendar years, a total of 32 claims are observed.

Determine the coefficient of variation of the posterior distribution of $\theta$.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{64}$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{32}$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{16}$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{4}$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$

## Exam C Practice Problem 5 – Bayesian Estimate of Claim Frequency

Problem 5-A

You are given the following:

• The number of claims in a calendar year for a given risk follows a Poisson distribution with mean $\theta$.
• The prior distribution of $\theta$ has the following density function.
• $\displaystyle \pi(\theta)=\frac{2}{\theta^3}, \ \ \ \ \ \ 1<\theta<\infty$

After observing for one calendar year, this risk is found to have incurred 4 claims.

Determine the Bayesian expected claim frequency for the given risk in the next year.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{2}$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{7}{2}$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

Problem 5-B

You are given the following:

• The number of claims in a calendar year for a given risk follows a Poisson distribution with mean $\theta$.
• The prior distribution of $\theta$ has the following density function.
• $\displaystyle \pi(\theta)=\frac{2}{\theta^3}, \ \ \ \ \ \ 1<\theta<\infty$

After observing for two calendar years, this risk is found to have incurred 2 claims in each year.

Determine the Bayesian expected claim frequency for the given risk in the next year.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{4}{3}$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{8}{5}$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{3}$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{9}{5}$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$

## Exam C Practice Problem 3 – Bayesian vs Buhlmann

Problem 3-A

A portfolio of independent risks is divided into two classes. Class 1 contains 60% of the risks in the portfolio and the remaining risks are in Class 2.

For each risk in the portfolio, the following shows the distributions of the number of claims in a calendar year.

$\displaystyle \begin{bmatrix} \text{ }&\text{ }&\text{Class 1} &\text{ }&\text{Class 2} \\X=x&\text{ }&P(X=x) &\text{ }&P(X=x) \\\text{ }&\text{ }&\text{ } &\text{ }&\text{ } \\ 0&\text{ }&0.50 &\text{ }&0.20 \\ 1&\text{ }&0.25&\text{ }&0.25 \\ 2&\text{ }&0.12&\text{ }&0.30 \\ 3&\text{ }&0.08&\text{ }&0.15 \\ 4&\text{ }&0.05&\text{ }&0.10 \end{bmatrix}$

A risk is randomly selected in the portfolio and is observed for two calendar years. The observed results are: 2 claim in the first calendar year and 3 claims in the second calendar year.

Determine the Bayesian expected number of claims for the selected risk in year 3.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.12$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.24$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.45$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.51$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.70$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

Problem 3-B

Using the same information as in Problem 3-A, determine the Buhlmann credibility estimate for the selected risk in year 3.

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0.93$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.24$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.45$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.51$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2.29$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$