Exam C Practice Problem 26 – A Limited Fluctuation Credibility Example

Problem 26-A

You are given the following about a large portfolio of insurance policies:

• For each insurance policy, the annual number of claims follows a binomial distribution with $m$ = 3 and $q$ = 0.3.
• The claim size follows an inverse Gamma distribution with $\alpha$ = 2.1 and $\theta$ = 3.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 10% of expected claim costs 90% of the time.

Using limited fluctuation credibility, determine the expected number of claims required for full credibility. $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 460$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 790$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2895$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3715$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4600$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

___________________________________________________________________________________

Problem 26-B

You are given the following about a large portfolio of insurance policies:

• For each insurance policy, the annual number of claims follows a binomial distribution with $m$ = 6 and $q$ = 0.1.
• The claim size follows a Gamma distribution with $\alpha$ = 0.8 and $\theta$ = 1.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 10% of expected claim costs 90% of the time.

Using limited fluctuation credibility, determine the expected number of exposures required for full credibility. $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 514$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 582$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 970$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5141$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5818$

___________________________________________________________________________________ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________ $\copyright \ 2013 \ \ \text{Dan Ma}$