# Exam C Practice Problem 20 – Working with Full Credibility Standard

Problem 20-A

You are given the following:

• The annual number of claims generated from a portfolio of insurance policies follows a Poisson distribution.
• The claim size is modeled by the random variable $Y=X^2$ where $X$ has an exponential distribution with mean 2.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 5% of expected claim costs 95% of the time.

Using limited fluctuation credibility, determine the expected number of claims required for full credibility?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3073$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4610$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6147$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7684$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9220$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

Problem 20-B

You are given the following:

• The annual number of claims generated from a portfolio of insurance policies follows a Poisson distribution.
• The claim size is modeled by the random variable $Y=4 X^2+32$ where $X$ has an exponential distribution with mean 2.
• The number of claims and the claim sizes are independent.
• The full credibility standard has been selected so that actual claim costs will be
within 5% of expected claim costs 95% of the time.

Using limited fluctuation credibility, determine the expected number of claims required for full credibility?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2017$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3073$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3457$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4150$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9220$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$