# Exam C Practice Problem 11 – Estimating Claim Frequency

Both Problems 11-A and 11-B use the following information.

A portfolio consists of independent risks divided into two classes. Seventy percent of the risks are in Class 1 and thirty percent are in Class 2.

• For each risk in Class 1, the number of claims in a year has a Poisson distribution with mean 1.
• For each risk in Class 2, the number of claims in a year has a Poisson distribution with mean 2.5.

A randomly selected risk from this portfolio has 2 claims in year 1 and 2 claims in year 2.

___________________________________________________________________________________

Problem 11-A

What is the Bayesian estimate of the number of claims in the next year?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.65$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.66$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.67$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.68$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.75$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

Problem 11-B

What is the Buhlmann estimate of the number of claims in the next year?

$\text{ }$

$\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.65$

$\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.66$

$\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.67$

$\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.68$

$\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1.75$

___________________________________________________________________________________

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________

$\copyright \ 2013 \ \ \text{Dan Ma}$