# Exam C Practice Problem 5 – Bayesian Estimate of Claim Frequency

Problem 5-A

You are given the following:

• The number of claims in a calendar year for a given risk follows a Poisson distribution with mean $\theta$.
• The prior distribution of $\theta$ has the following density function.
• $\displaystyle \pi(\theta)=\frac{2}{\theta^3}, \ \ \ \ \ \ 1<\theta<\infty$

After observing for one calendar year, this risk is found to have incurred 4 claims.

Determine the Bayesian expected claim frequency for the given risk in the next year. $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{2}$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{7}{2}$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

Problem 5-B

You are given the following:

• The number of claims in a calendar year for a given risk follows a Poisson distribution with mean $\theta$.
• The prior distribution of $\theta$ has the following density function.
• $\displaystyle \pi(\theta)=\frac{2}{\theta^3}, \ \ \ \ \ \ 1<\theta<\infty$

After observing for two calendar years, this risk is found to have incurred 2 claims in each year.

Determine the Bayesian expected claim frequency for the given risk in the next year. $\text{ }$ $\displaystyle (A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{4}{3}$ $\displaystyle (B) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{8}{5}$ $\displaystyle (C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{3}$ $\displaystyle (D) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{9}{5}$ $\displaystyle (E) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2$

___________________________________________________________________________________ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$ $\text{ }$

___________________________________________________________________________________

___________________________________________________________________________________ $\copyright \ 2013 \ \ \text{Dan Ma}$